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Hash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret  
key

Sign SignatureM H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the 
same hash in time less than 2n/2, the time of 
a birthday attack.

2



Julia Len UCSD

Generation

1st MD4, MD5 128

2nd SHA-1, SHA-256, 
SHA-512

160, 256, 
512

3rd SHA3-224, SHA3-256, 
SHA3-384, SHA3-512

224, 256, 384, 
512
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Generation
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H n

https://shattered.io/

Hash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret  
key

Sign SignatureM H

Collisions in     lead to 
certificate forgery. SHA-1 

collision leading to browsers no 
longer accepting SHA-1-based 

certificates.

H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the 
same hash in time less than 2n/2, the time of 
a birthday attack.

[SBKAM17]
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How hash functions are built 

3



Julia Len UCSD

How hash functions are built 
Step 1: Design a compression function 

h
m

h(m, c)

h : {0, 1}h.ml+h.cl ! {0, 1}h.cl

c

MD5 512 128
SHA-1 512 160

SHA-256 512 256
SHA-512 1024 512

h.clh.mlH

h
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How hash functions are built 
Step 1: Design a compression function 
Step 2: Convert    into a CR hash  
function via the MD transform 

m[1]m[2]...m[n] Mkpad

" …h h h
H(M)

h
m

h(m, c)

h : {0, 1}h.ml+h.cl ! {0, 1}h.cl

c

Hh
h
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Merkle Damgård

How hash functions are built 
Step 1: Design a compression function 
Step 2: Convert    into a CR hash  
function via the MD transform 

m[1]m[2]...m[n] Mkpad

" …h h h
H(M)

h
m

h(m, c)

h : {0, 1}h.ml+h.cl ! {0, 1}h.cl

c

Hh

Classical Theorem: [Me,Da]     CR =>      CRh H

h
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Step 1: Design a compression function 
Step 2: Convert    into a CR hash 
function     via the MD transform 

Classical Theorem:[Me,Da] 
   CR =>     CRHh

Problem: We haven’t done so well in designing CR hash functions. 
• Corollary of Classical Theorem:      not CR =>    not CR 
• So compression functions of MD5 and SHA-1 are NOT CR

H h

h
h

H
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Step 1: Design a compression function 
Step 2: Convert    into a CR hash 
function     via the MD transform 

Classical Theorem:[Me,Da] 
   CR =>     CRHh

Problem: We haven’t done so well in designing CR hash functions. 
• Corollary of Classical Theorem:      not CR =>    not CR 
• So compression functions of MD5 and SHA-1 are NOT CR

H h

Question: Can we weaken the assumption on    ?
Desired Theorem: 
   is X-secure =>    CR 

For some choice of X that is WEAKER than CR.

h H

h
h

H

h
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Our Answer: YES,  X = CCR

Constrained Collision-Resistance.  
We will define this and show it is weaker than CR.

Step 1: Design a compression function 
Step 2: Convert    into a CR hash 
function     via the MD transform 
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H h
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h H

h
h

H

h
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Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Our Theorem 1: 
    CCR =>     CR

Our Theorem 2: There exist    that 
are CCR but not CR

Classical Theorem:[Me,Da] 
   CR =>     CRHh

h
h H

Step 1: Design a compression function 
Step 2: Convert    into a CR hash 
function     via the MD transform 

h
h

H
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Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR

Better than Advertised: The MD transform does more than previously understood: It can 
promote weaker-than-CR compression functions into CR hash functions.

Our Theorem 1: 
    CCR =>     CR

Our Theorem 2: There exist    that 
are CCR but not CR

Security amplification: The MD transform “amplifies’’ or “boosts’’ security by turning a 
weaker-than-CR compression functions into a CR hash function.

Classical Theorem:[Me,Da] 
   CR =>     CRHh

h
h H

Step 1: Design a compression function 
Step 2: Convert    into a CR hash 
function     via the MD transform 

h
h

H
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Contributions

These results are obtained via a general framework
— Parameterized version of MD:
— RS Security framework: Yields both old and new definitions of security for

Our Theorem 1: 
    CCR =>     CR

Our Theorem 2: There exist    that 
are CCR but not CR

h
h H

H = MD[h, Split, S]

h
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Contributions

These results are obtained via a general framework
— Parameterized version of MD:

The framework

— RS Security framework: Yields both old and new definitions of security for

— Allows us to formalize and prove folklore results
— Is used to prove some new results
— Is pedagogically valuable in unifying results in the area 

Some of our other results
— We give an MD variant that is more efficient than MD
— Memory-efficient reductions
— Various separations and counter-examples 

Our Theorem 1: 
    CCR =>     CR

Our Theorem 2: There exist    that 
are CCR but not CR

h
h H

H = MD[h, Split, S]

h
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Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.
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We can’t fix broken hash functions.

2.
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Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.

MD5 and SHA-1 do not have CCR compression functions.
We can’t fix broken hash functions.

2.

Our work is ONLY about CR of     , not other attributes such as indifferentiability.
Although hash functions have many usages, CR is central due to certificates.

H3.

A lot of our work formalizes, extends and unifies folklore or known results.
Nothing we do is technically hard.

5.

For the result that:    is X-secure implies     is CR we said that X = CCR suffices
Q: Is there an X weaker than CCR for which the result holds?
A: YES, and our framework allows us to define such properties X.
But the gains from further weakening the assumption X are moot …

h H4.
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The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 || 

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 || 
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S
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The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]
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0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 || 
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

Split m[1]m[2]...m[n]

…h h h
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Possible conditions on Split

Suffix-free After you apply          on two distinct messages, neither 
resulting vector is a suffix of the other.

Split

Typical suffix-free encoding of       (such as in SHA-256):M
padM

m[1] m[2] m[3]Split(M)

h|M |i

Injective

10⇤

m[1] m[2]Split(M)

M

After you apply          on two distinct messages, you get two
distinct vectors.

Split

               is one block shorter, so hashing uses one less call to the 
compression function. Faster!
Split(M)

9



Julia Len UCSD

To win,      must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)
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h

h
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m2
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h

h
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m2
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c2h

h
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1

m0
2
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h

h

y

m1

m2

c1

c2

or
y

h

h

m1

m2

s

sh

h

c02

m0
1

m0
2

c01
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0
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0
2)
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s
h

m

c

To win,      must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)

Pre
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The RS Security Framework

starting  
value

string that  
adversary  

outputsFor Rcr we have            . s = "

R(s, out)

Our definition of security for a compression function     is parameterized by 
a relation

and a set S ✓ {0, 1}⇤
R : {0, 1}⇤ ⇥ {0, 1}⇤ ! {true, false}

h

In the previous slide we defined CR, CCR, and Pre. 
We give a general definitional framework that yields these and other definitions.
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outputsFor Rcr we have            . s = "

R(s, out)

Our definition of security for a compression function     is parameterized by 
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Results

If Split is and h is then H = 
MD[h,Split,S] is Notes

1 Suffix-free CR CR Known [Me,Da], reproved

2 Suffix-free CCR CR

3 Injective CCR and Pre CR Folklore for CR and Pre 
[AnSt11]

Typically,               is a singleton set.S = {s}
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Theorem
Let         be a suffix-free splitting function. Given an adversary       , we define       such 
that

The time complexity of       is approximately that of        plus the time to compute    . 
The memory complexity of       is the maximum of the memory complexity of         and 
term linear in the length of the output of       .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking 
paradigm of [Me,Da] but constructs a 
CCR-violating adversary rather than a 
CR-violating one.

…
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Theorem  Same as above, except:
The memory complexity of       is the maximum of the memory complexity of         and 
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1  Split(M1) ; m2  Split(M2) ; n1  |m1| ; n2  |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1  m1[n1 � n+ i]; c1  c1[n1 � n+ i]
m2  m2[n2 � n+ i]; c2  c2[n2 � n+ i]
c01  h(m1, c1)
c02  h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1  (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2  (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

15
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CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1.    is CCR
2.    is not CR
3.                                  is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1.         is suffix-free
2.    has access to a CR function
3.   

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)
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We show this by defining a CCR but not CR secure compression function:

Claims
1.    is CCR
2.    is not CR
3.                                  is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1.         is suffix-free
2.    has access to a CR function
3.   

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

H(M)sS $

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

0 kh0(m[1], c[1]) 0 kh0(m[2], c[2]) 0 kh0(m[n� 1], c[n� 1])

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)
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Speeding up MD
Recall: using an injective splitting function could 
potentially save an extra call to    . This could lead 
to efficiency gains in the performance of the MD 
transform. 

h

Let           be an injective splitting function. Given an adversary       we define 
adversaries      and       such that  

Advcr
H(AH)  AdvRccrS

h (Ah) +Adv
RpreS
h (Bh)

The time complexities of       and       are that of        plus the time to compute       on its 
output. The memory complexities of       and       are the maximum of that of       and a 
small constant. 

AH

Ah Bh

Split

Ah Bh AH H
Ah Bh AH

Theorem

[AnSt11] informally state 
similar result for CR.
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Speeding up MD
Recall: using an injective splitting function could 
potentially save an extra call to    . This could lead 
to efficiency gains in the performance of the MD 
transform. 

h

Let           be an injective splitting function. Given an adversary       we define 
adversaries      and       such that  

Advcr
H(AH)  AdvRccrS

h (Ah) +Adv
RpreS
h (Bh)

The time complexities of       and       are that of        plus the time to compute       on its 
output. The memory complexities of       and       are the maximum of that of       and a 
small constant. 

AH

Ah Bh

Split

Ah Bh AH H
Ah Bh AH

Theorem

h h

m[1]

…h

m[2] m[n]

H(M)s

h…h
H(M)s

m[1] m[n� 1]

Case 1: This is   .s
h

Case 2: This is a 
collision in    

somewhere here.
h
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• We defined a framework for the MD transform that allows us to formalize 
results and unify and simplify the area.

• We defined a new security property for compression functions called 
constrained collision resistance (CCR) and showed that a CCR 
compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical 
definitions and specify new variants of definitions.

• We showed how the MD transform can be made more efficient by using   
an injective splitting function. In particular, if the splitting function is 
injective, the compression function is CCR, and it is hard to find a             
pre-image for s, then the hash function will be CR.

• We looked at memory complexity by explicitly giving reductions. In 
addition, we gave alternate reduction algorithms that were more memory 
tight. This allows us to more easily address memory complexity.
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