
Julia Len UCSD

Improved Collision-Resistance Guarantees
for MD-Based Hash Functions

Mihir Bellare Joseph Jaeger Julia Len

Better Than Advertised:

UC San Diego

1

Julia Len UCSD

Hash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret
key

Sign SignatureM H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the
same hash in time less than 2n/2, the time of
a birthday attack.

2

Julia Len UCSD

Generation

1st MD4, MD5 128

2nd SHA-1, SHA-256,
SHA-512

160, 256,
512

3rd SHA3-224, SHA3-256,
SHA3-384, SHA3-512

224, 256, 384,
512

H nHash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret
key

Sign SignatureM H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the
same hash in time less than 2n/2, the time of
a birthday attack.

2

Julia Len UCSD

Generation

1st MD4, MD5 128

2nd SHA-1, SHA-256,
SHA-512

160, 256,
512

3rd SHA3-224, SHA3-256,
SHA3-384, SHA3-512

224, 256, 384,
512

H nHash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret
key

Sign SignatureM H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the
same hash in time less than 2n/2, the time of
a birthday attack.

2

Julia Len UCSD

Generation

1st MD4, MD5 128

2nd SHA-1, SHA-256,
SHA-512

160, 256,
512

3rd SHA3-224, SHA3-256,
SHA3-384, SHA3-512

224, 256, 384,
512

H nHash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret
key

Sign SignatureM H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the
same hash in time less than 2n/2, the time of
a birthday attack.

2

Julia Len UCSD

Generation

1st MD4, MD5 128

2nd SHA-1, SHA-256,
SHA-512

160, 256,
512

3rd SHA3-224, SHA3-256,
SHA3-384, SHA3-512

224, 256, 384,
512

H n

https://shattered.io/

Hash Functions

any size fixed size

H : {0, 1}⇤ ! {0, 1}n

HM H(M)

Central usage: Certificates

secret
key

Sign SignatureM H

Collisions in lead to
certificate forgery. SHA-1

collision leading to browsers no
longer accepting SHA-1-based

certificates.

H

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the
same hash in time less than 2n/2, the time of
a birthday attack.

[SBKAM17]

2

Julia Len UCSD

How hash functions are built

3

Julia Len UCSD

How hash functions are built
Step 1: Design a compression function

h
m

h(m, c)

h : {0, 1}h.ml+h.cl ! {0, 1}h.cl

c

MD5 512 128
SHA-1 512 160

SHA-256 512 256
SHA-512 1024 512

h.clh.mlH

h

3

Julia Len UCSD

How hash functions are built
Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

m[1]m[2]...m[n] Mkpad

" …h h h
H(M)

h
m

h(m, c)

h : {0, 1}h.ml+h.cl ! {0, 1}h.cl

c

Hh
h

3

Julia Len UCSD

Merkle Damgård

How hash functions are built
Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

m[1]m[2]...m[n] Mkpad

" …h h h
H(M)

h
m

h(m, c)

h : {0, 1}h.ml+h.cl ! {0, 1}h.cl

c

Hh

Classical Theorem: [Me,Da] CR => CRh H

h

3

Julia Len UCSD

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

Classical Theorem:[Me,Da]
 CR => CRHh

Problem: We haven’t done so well in designing CR hash functions.
• Corollary of Classical Theorem: not CR => not CR
• So compression functions of MD5 and SHA-1 are NOT CR

H h

h
h

H

4

Julia Len UCSD

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

Classical Theorem:[Me,Da]
 CR => CRHh

Problem: We haven’t done so well in designing CR hash functions.
• Corollary of Classical Theorem: not CR => not CR
• So compression functions of MD5 and SHA-1 are NOT CR

H h

Question: Can we weaken the assumption on ?
Desired Theorem:
 is X-secure => CR

For some choice of X that is WEAKER than CR.

h H

h
h

H

h

4

Julia Len UCSD

Our Answer: YES, X = CCR

Constrained Collision-Resistance.
We will define this and show it is weaker than CR.

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

Classical Theorem:[Me,Da]
 CR => CRHh

Problem: We haven’t done so well in designing CR hash functions.
• Corollary of Classical Theorem: not CR => not CR
• So compression functions of MD5 and SHA-1 are NOT CR

H h

Question: Can we weaken the assumption on ?
Desired Theorem:
 is X-secure => CR

For some choice of X that is WEAKER than CR.

h H

h
h

H

h

4

Julia Len UCSD

Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

Classical Theorem:[Me,Da]
 CR => CRHh

h
h H

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

h
h

H

5

Julia Len UCSD

Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

Classical Theorem:[Me,Da]
 CR => CRHh

h
h H

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

h
h

H

5

Julia Len UCSD

Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR

Better than Advertised: The MD transform does more than previously understood: It can
promote weaker-than-CR compression functions into CR hash functions.

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

Classical Theorem:[Me,Da]
 CR => CRHh

h
h H

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

h
h

H

5

Julia Len UCSD

Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR

Better than Advertised: The MD transform does more than previously understood: It can
promote weaker-than-CR compression functions into CR hash functions.

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

Security amplification: The MD transform “amplifies’’ or “boosts’’ security by turning a
weaker-than-CR compression functions into a CR hash function.

Classical Theorem:[Me,Da]
 CR => CRHh

h
h H

Step 1: Design a compression function
Step 2: Convert into a CR hash
function via the MD transform

h
h

H

5

Julia Len UCSD

Contributions

These results are obtained via a general framework
— Parameterized version of MD:
— RS Security framework: Yields both old and new definitions of security for

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

h
h H

H = MD[h, Split, S]

h

6

Julia Len UCSD

Contributions

These results are obtained via a general framework
— Parameterized version of MD:

The framework

— RS Security framework: Yields both old and new definitions of security for

— Allows us to formalize and prove folklore results
— Is used to prove some new results
— Is pedagogically valuable in unifying results in the area

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

h
h H

H = MD[h, Split, S]

h

6

Julia Len UCSD

Contributions

These results are obtained via a general framework
— Parameterized version of MD:

The framework

— RS Security framework: Yields both old and new definitions of security for

— Allows us to formalize and prove folklore results
— Is used to prove some new results
— Is pedagogically valuable in unifying results in the area

Some of our other results
— We give an MD variant that is more efficient than MD
— Memory-efficient reductions
— Various separations and counter-examples

Our Theorem 1:
 CCR => CR

Our Theorem 2: There exist that
are CCR but not CR

h
h H

H = MD[h, Split, S]

h

6

Julia Len UCSD

Caveats and FAQ

7

Julia Len UCSD

Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.

7

Julia Len UCSD

Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.

MD5 and SHA-1 do not have CCR compression functions.
We can’t fix broken hash functions.

2.

7

Julia Len UCSD

Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.

MD5 and SHA-1 do not have CCR compression functions.
We can’t fix broken hash functions.

2.

Our work is ONLY about CR of , not other attributes such as indifferentiability.
Although hash functions have many usages, CR is central due to certificates.

H3.

7

Julia Len UCSD

Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.

MD5 and SHA-1 do not have CCR compression functions.
We can’t fix broken hash functions.

2.

Our work is ONLY about CR of , not other attributes such as indifferentiability.
Although hash functions have many usages, CR is central due to certificates.

H3.

For the result that: is X-secure implies is CR we said that X = CCR suffices
Q: Is there an X weaker than CCR for which the result holds?
A: YES, and our framework allows us to define such properties X.
But the gains from further weakening the assumption X are moot …

h H4.

7

Julia Len UCSD

Caveats and FAQ

We don’t design CCR compression functions.
But existing candidates include the compression functions of SHA256, SHA512

1.

MD5 and SHA-1 do not have CCR compression functions.
We can’t fix broken hash functions.

2.

Our work is ONLY about CR of , not other attributes such as indifferentiability.
Although hash functions have many usages, CR is central due to certificates.

H3.

A lot of our work formalizes, extends and unifies folklore or known results.
Nothing we do is technically hard.

5.

For the result that: is X-secure implies is CR we said that X = CCR suffices
Q: Is there an X weaker than CCR for which the result holds?
A: YES, and our framework allows us to define such properties X.
But the gains from further weakening the assumption X are moot …

h H4.

7

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

8

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

M

8

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

Split m[1]m[2]...m[n]M

8

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

Split m[1]m[2]...m[n]

…h h h

M

8

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

Split m[1]m[2]...m[n]

…h h h

M

8

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

Split m[1]m[2]...m[n]

…h h h
sS $

M

8

Julia Len UCSD

The MD Framework Splitting function Split : D ! ({0, 1}h.ml)⇤

Set of starting points S ✓ {0, 1}h.cl
H = MD[h, Split, S]

MD5 md5 M || 1 || 0…0 || 〈|M|〉64 {0x67452301 || 0xefcdab89 || 0x98badcfe || 0x10325476}

SHA-1 sha1 M || 1 || 0…0 || 〈|M|〉64
{0x67452301 || 0xefcdab89 || 0x98badcfe ||0x10325476 ||

0xc3d2e1f0}

SHA-256 sha256 M || 1 || 0…0 || 〈|M|〉64
{0x6a09e667 || 0xbb67ae85 || 0x3c6ef372 || 0xa54ff53a ||

0x510e527f || 0x9b05688c || 0x1f83d9ab || 0x5be0cd19}

SHA-512 sha512 M || 1 || 0…0 || 〈|M|〉128 {0x6a09e667f3bcc908 || 0xbb67ae8584caa73b || 0x3c6ef372fe94f82b || 0xa54ff53a5f1d36f1 || 0x510e527fade682d1 ||
0x9b05688c2b3e6c1f || 0x1f83d9abfb41bd6b || 0x5be0cd19137e2179}

H h Split S

Split m[1]m[2]...m[n]

…h h h
sS $

M

H(M)

8

Julia Len UCSD

Possible conditions on Split

Suffix-free After you apply on two distinct messages, neither
resulting vector is a suffix of the other.

Split

Typical suffix-free encoding of (such as in SHA-256):M
padM

m[1] m[2] m[3]Split(M)

h|M |i

Injective

10⇤

m[1] m[2]Split(M)

M

After you apply on two distinct messages, you get two
distinct vectors.

Split

 is one block shorter, so hashing uses one less call to the
compression function. Faster!
Split(M)

9

Julia Len UCSD

To win, must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)

10

Julia Len UCSD

h

h

y

m1

m2

c1

c2

To win, must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)

10

Julia Len UCSD

h

h

y

m1

m2

c1

c2h

h

c02

m0
1

m0
2

c01

To win, must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)

10

Julia Len UCSD

h

h

y

m1

m2

c1

c2

or
y

h

h

m1

m2

s

sh

h

c02

m0
1

m0
2

c01

To win, must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)

10

Julia Len UCSD

s
h

m

c

To win, must find such that

CR

CCR

Pre

h(m1, c1) = h(m2, c2)

h(m1, c1) = h(m2, c2)

c1 2 {s, h(m0
1, c

0
1)}

c2 2 {s, h(m0
2, c

0
2)}

A

(m, c) h(m, c) = s

(m1, c1) 6= (m2, c2)

(m1, c1) 6= (m2, c2)

(m0
1, c

0
1), (m

0
2, c

0
2)

Pre

11

Julia Len UCSD

The RS Security Framework

starting
value

string that
adversary

outputsFor Rcr we have . s = "

R(s, out)

Our definition of security for a compression function is parameterized by
a relation

and a set S ✓ {0, 1}⇤
R : {0, 1}⇤ ⇥ {0, 1}⇤ ! {true, false}

h

In the previous slide we defined CR, CCR, and Pre.
We give a general definitional framework that yields these and other definitions.

12

Julia Len UCSD

The RS Security Framework

starting
value

string that
adversary

outputsFor Rcr we have . s = "

R(s, out)

Our definition of security for a compression function is parameterized by
a relation

and a set S ✓ {0, 1}⇤
R : {0, 1}⇤ ⇥ {0, 1}⇤ ! {true, false}

h

In the previous slide we defined CR, CCR, and Pre.
We give a general definitional framework that yields these and other definitions.

 returns true iff Property

 Collision resistance

Constrained CR

Pre-image resistance

R out

R(s, out)

Rcr

Rpre

Rccr

((m1, c1), (m2, c2))

(m, c)

((m1, c1), (m2, c2),

((m0
1, c

0
1), (m

0
2, c

0
2)))

h(m1, c1) = h(m2, c2)
Rcr(", ((m1, c1), (m2, c2)))^
(c1 2 {s, h(m0

1, c
0
1)})^

(c2 2 {s, h(m0
2, c

0
2)})

h(m, c) = s
12

Julia Len UCSD

Results

If Split is and h is then H =
MD[h,Split,S] is Notes

1 Suffix-free CR CR Known [Me,Da], reproved

2 Suffix-free CCR CR

3 Injective CCR and Pre CR Folklore for CR and Pre
[AnSt11]

Typically, is a singleton set.S = {s}

Julia Len UCSD

Results

If Split is and h is then H =
MD[h,Split,S] is Notes

1 Suffix-free CR CR Known [Me,Da], reproved

2 Suffix-free CCR CR

3 Injective CCR and Pre CR Folklore for CR and Pre
[AnSt11]

Typically, is a singleton set.S = {s}

CR

CCR + Pre

Julia Len UCSD

Results

If Split is and h is then H =
MD[h,Split,S] is Notes

1 Suffix-free CR CR Known [Me,Da], reproved

2 Suffix-free CCR CR

3 Injective CCR and Pre CR Folklore for CR and Pre
[AnSt11]

CCR

Typically, is a singleton set.S = {s}

CR

CCR + Pre

Julia Len UCSD

Results

If Split is and h is then H =
MD[h,Split,S] is Notes

1 Suffix-free CR CR Known [Me,Da], reproved

2 Suffix-free CCR CR

3 Injective CCR and Pre CR Folklore for CR and Pre
[AnSt11]

CCR

Pre

Typically, is a singleton set.S = {s}

CR

CCR + Pre

Julia Len UCSD

Results

If Split is and h is then H =
MD[h,Split,S] is Notes

1 Suffix-free CR CR Known [Me,Da], reproved

2 Suffix-free CCR CR

3 Injective CCR and Pre CR Folklore for CR and Pre
[AnSt11]

CCR

Pre

Typically, is a singleton set.S = {s}

Discussed in the
rest of this talk

CR

CCR + Pre

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…

14

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…h h

h h…

…

…

14

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…h h

h h…

…

…
m1[1]

m1[n1]

m2[1]

m2[n2]

…

…

m1[1]

m2[1]

m1[n1]

m2[n2]

14

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…h h

h h…

…

…
c2[n2]

c1[n1]

c2[n2]

c1[1]

c2[1]

…

…

s

s

c1[2]

c2[2]

c1[n1]

m1[1]

m1[n1]

m2[1]

m2[n2]

…

…

m1[1]

m2[1]

m1[n1]

m2[n2]

14

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…h h

h h…

…

…
c2[n2]

c1[n1]

c2[n2]

c1[1]

c2[1]

…

…

s

s

c1[2]

c2[2]

c1[n1]

m1[1]

m1[n1]

m2[1]

m2[n2]

…

…

m1[1]

m2[1]

m1[n1]

m2[n2]

H(M1)

H(M2)

==

14

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…h h

h h…

…

…
c2[n2]

c1[n1]

c2[n2]

c1[1]

c2[1]

…

…

s

s

c1[2]

c2[2]

c1[n1]

m1[1]

m1[n1]

m2[1]

m2[n2]

…

…

m1[1]

m2[1]

m1[n1]

m2[n2]

==

H(M1)

H(M2)

==

14

Julia Len UCSD

Theorem
Let be a suffix-free splitting function. Given an adversary , we define such
that

The time complexity of is approximately that of plus the time to compute .
The memory complexity of is the maximum of the memory complexity of and
term linear in the length of the output of .

Split

Advcr
H(AH)  AdvRccrS

h (Ah)

AH Ah

Ah AH H
Ah AH

AH

Proof uses the back-tracking
paradigm of [Me,Da] but constructs a
CCR-violating adversary rather than a
CR-violating one.

…h h

h h…

…

…
c2[n2]

c1[n1]

c2[n2]

c1[1]

c2[1]

…

…

s

s

c1[2]

c2[2]

c1[n1]

m1[1]

m1[n1]

m2[1]

m2[n2]

…

…

m1[1]

m2[1]

m1[n1]

m2[n2]

== ==

H(M1)

H(M2)

==

14

Julia Len UCSD

Theorem Same as above, except:
The memory complexity of is the maximum of the memory complexity of and
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1 Split(M1) ; m2 Split(M2) ; n1 |m1| ; n2 |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1 m1[n1 � n+ i]; c1 c1[n1 � n+ i]
m2 m2[n2 � n+ i]; c2 c2[n2 � n+ i]
c01 h(m1, c1)
c02 h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1 (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2 (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

15

Julia Len UCSD

Theorem Same as above, except:
The memory complexity of is the maximum of the memory complexity of and
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…h h

h h…

…

…

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1 Split(M1) ; m2 Split(M2) ; n1 |m1| ; n2 |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1 m1[n1 � n+ i]; c1 c1[n1 � n+ i]
m2 m2[n2 � n+ i]; c2 c2[n2 � n+ i]
c01 h(m1, c1)
c02 h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1 (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2 (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

15

Julia Len UCSD

Theorem Same as above, except:
The memory complexity of is the maximum of the memory complexity of and
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…h h

h h…

…

…

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1 Split(M1) ; m2 Split(M2) ; n1 |m1| ; n2 |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1 m1[n1 � n+ i]; c1 c1[n1 � n+ i]
m2 m2[n2 � n+ i]; c2 c2[n2 � n+ i]
c01 h(m1, c1)
c02 h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1 (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2 (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

s

s

m1[1]

m2[1]

m1

m2

15

Julia Len UCSD

Theorem Same as above, except:
The memory complexity of is the maximum of the memory complexity of and
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…h h

h h…

…

…

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1 Split(M1) ; m2 Split(M2) ; n1 |m1| ; n2 |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1 m1[n1 � n+ i]; c1 c1[n1 � n+ i]
m2 m2[n2 � n+ i]; c2 c2[n2 � n+ i]
c01 h(m1, c1)
c02 h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1 (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2 (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

s

s

m1[1]

m2[1]

m1

m2

c1[2]

c2[2]

==
c2
c1

15

Julia Len UCSD

Theorem Same as above, except:
The memory complexity of is the maximum of the memory complexity of and
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…h h

h h…

…

…
c2[n2]

c1[n1]

m1[n1]

m2[n2]

==

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1 Split(M1) ; m2 Split(M2) ; n1 |m1| ; n2 |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1 m1[n1 � n+ i]; c1 c1[n1 � n+ i]
m2 m2[n2 � n+ i]; c2 c2[n2 � n+ i]
c01 h(m1, c1)
c02 h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1 (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2 (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

s

s

m1[1]

m2[1]

m1

m2

c1[2]

c2[2]

==
c2
c1

15

Julia Len UCSD

Theorem Same as above, except:
The memory complexity of is the maximum of the memory complexity of and
a small constant.

Ah AH

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.

…h h

h h…

…

…
c2[n2]

c1[n1]

m1[n1]

m2[n2]

==

H(M1)

H(M2)

==

Closer look at memory complexity

adversary Ah(s)

(M1,M2) AH(s, ✏)
m1 Split(M1) ; m2 Split(M2) ; n1 |m1| ; n2 |m2|
c1[1] s ; c2[1] s; n min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 � n2 do c1[i+ 1] h(m1[i], c1[i])
If (n2 > n1) then

For i = 1, . . . , n2 � n1 do c2[i+ 1] h(m2[i], c2[i])
For i = 1, . . . , n do

m1 m1[n1 � n+ i]; c1 c1[n1 � n+ i]
m2 m2[n2 � n+ i]; c2 c2[n2 � n+ i]
c01 h(m1, c1)
c02 h(m2, c2)
If (c01 = c02) and (m1, c1) 6= (m2, c2) then

a1 (m1[n1 � n+ i� 1], c1[n1 � n+ i� 1])

a2 (m2[n2 � n+ i� 1], c2[n2 � n+ i� 1])

Return ((m1, c1), (m2, c2), a1, a2)
c1[n1 � n+ i+ 1] c01
c2[n2 � n+ i+ 1] c02

Return ?

s

s

m1[1]

m2[1]

m1

m2

c1[2]

c2[2]

==
c2
c1

15

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

sS $

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

sS $

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

0 kh0(m[1], c[1])

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

sS $

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

0 kh0(m[1], c[1]) 0 kh0(m[2], c[2])

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

sS $

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

0 kh0(m[1], c[1]) 0 kh0(m[2], c[2]) 0 kh0(m[n� 1], c[n� 1])

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

CCR is strictly weaker than CR
We show this by defining a CCR but not CR secure compression function:

Claims
1. is CCR
2. is not CR
3. is CRH = MD[h, Split, S]

h
h

h : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl

Assumptions
1. is suffix-free
2. has access to a CR function
3.

h
Split

h0 : {0, 1}h.ml ⇥ {0, 1}h.cl ! {0, 1}h.cl�1

h h

m[1]

…h

m[2] m[n]

H(M)sS $

S = {0, 1}h.cl \ {1k0h.cl�1, 12k0h.cl�2}

0 kh0(m[1], c[1]) 0 kh0(m[2], c[2]) 0 kh0(m[n� 1], c[n� 1])

h(m, c)

If (m, c) 2 {(0h.ml, 1 k 0h.cl�1), (1h.ml, 12 k 0h.cl�2)}
Return 1h.cl

Return 0 kh0(m, c)

Julia Len UCSD

Speeding up MD
Recall: using an injective splitting function could
potentially save an extra call to . This could lead
to efficiency gains in the performance of the MD
transform.

h

Let be an injective splitting function. Given an adversary we define
adversaries and such that

Advcr
H(AH)  AdvRccrS

h (Ah) +Adv
RpreS
h (Bh)

The time complexities of and are that of plus the time to compute on its
output. The memory complexities of and are the maximum of that of and a
small constant.

AH

Ah Bh

Split

Ah Bh AH H
Ah Bh AH

Theorem

[AnSt11] informally state
similar result for CR.

17

Julia Len UCSD

Speeding up MD
Recall: using an injective splitting function could
potentially save an extra call to . This could lead
to efficiency gains in the performance of the MD
transform.

h

Let be an injective splitting function. Given an adversary we define
adversaries and such that

Advcr
H(AH)  AdvRccrS

h (Ah) +Adv
RpreS
h (Bh)

The time complexities of and are that of plus the time to compute on its
output. The memory complexities of and are the maximum of that of and a
small constant.

AH

Ah Bh

Split

Ah Bh AH H
Ah Bh AH

Theorem

h h

m[1]

…h

m[2] m[n]

H(M)s

h…h
H(M)s

m[1] m[n� 1]

17

Julia Len UCSD

Speeding up MD
Recall: using an injective splitting function could
potentially save an extra call to . This could lead
to efficiency gains in the performance of the MD
transform.

h

Let be an injective splitting function. Given an adversary we define
adversaries and such that

Advcr
H(AH)  AdvRccrS

h (Ah) +Adv
RpreS
h (Bh)

The time complexities of and are that of plus the time to compute on its
output. The memory complexities of and are the maximum of that of and a
small constant.

AH

Ah Bh

Split

Ah Bh AH H
Ah Bh AH

Theorem

h h

m[1]

…h

m[2] m[n]

H(M)s

h…h
H(M)s

m[1] m[n� 1]

Case 1: This is .s

17

Julia Len UCSD

Speeding up MD
Recall: using an injective splitting function could
potentially save an extra call to . This could lead
to efficiency gains in the performance of the MD
transform.

h

Let be an injective splitting function. Given an adversary we define
adversaries and such that

Advcr
H(AH)  AdvRccrS

h (Ah) +Adv
RpreS
h (Bh)

The time complexities of and are that of plus the time to compute on its
output. The memory complexities of and are the maximum of that of and a
small constant.

AH

Ah Bh

Split

Ah Bh AH H
Ah Bh AH

Theorem

h h

m[1]

…h

m[2] m[n]

H(M)s

h…h
H(M)s

m[1] m[n� 1]

Case 1: This is .s
h

Case 2: This is a
collision in

somewhere here.
h

17

Julia Len UCSD

Summary

18

Julia Len UCSD

Summary

• We defined a framework for the MD transform that allows us to formalize
results and unify and simplify the area.

18

Julia Len UCSD

Summary

• We defined a framework for the MD transform that allows us to formalize
results and unify and simplify the area.

• We defined a new security property for compression functions called
constrained collision resistance (CCR) and showed that a CCR
compression function will result in a CR hash function.

18

Julia Len UCSD

Summary

• We defined a framework for the MD transform that allows us to formalize
results and unify and simplify the area.

• We defined a new security property for compression functions called
constrained collision resistance (CCR) and showed that a CCR
compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical
definitions and specify new variants of definitions.

18

Julia Len UCSD

Summary

• We defined a framework for the MD transform that allows us to formalize
results and unify and simplify the area.

• We defined a new security property for compression functions called
constrained collision resistance (CCR) and showed that a CCR
compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical
definitions and specify new variants of definitions.

• We looked at memory complexity by explicitly giving reductions. In
addition, we gave alternate reduction algorithms that were more memory
tight. This allows us to more easily address memory complexity.

18

Julia Len UCSD

Summary

• We defined a framework for the MD transform that allows us to formalize
results and unify and simplify the area.

• We defined a new security property for compression functions called
constrained collision resistance (CCR) and showed that a CCR
compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical
definitions and specify new variants of definitions.

• We showed how the MD transform can be made more efficient by using
an injective splitting function. In particular, if the splitting function is
injective, the compression function is CCR, and it is hard to find a
pre-image for s, then the hash function will be CR.

• We looked at memory complexity by explicitly giving reductions. In
addition, we gave alternate reduction algorithms that were more memory
tight. This allows us to more easily address memory complexity.

18

